The optimum conditions for synthesis of Fe3O4/ZnO core/shell magnetic nanoparticles for photodegradation of phenol
نویسندگان
چکیده
The photocatalysis of phenol was studied using Fe3O4/ZnO core/shell magnetic nanoparticles (MNPs). The photocatalysts were synthesized by coating of ZnO onto the magnetite by precipitation method and characterized by XRD, SEM and FTIR measurements. Using the Taguchi method, this study analyzes the effect of parameters such as calcinations time, calcinations temperature and molar ratio of Fe3O4:ZnO on the photo activity of Fe3O4/ZnO MNPs. XRD and FTIR analysis confirm that coating process was done successfully. SEM images show that the average particle size of synthesized Fe3O4/ZnO nanoparticles was about 50 nm. The phenol removal efficiency of 88% can be achieved by using a photocatalyst which is synthesized through the optimum conditions: calcinations temperature of 550°C, calcinations time of 2 hours and molar ratio of 1:10 for Fe3O4:ZnO.
منابع مشابه
Synthesis and Characterization of a Novel Fe3O4-SiO2@Gold Core-Shell Biocompatible Magnetic Nanoparticles for Biological and Medical Applications
Objectives: The study of core-shell magnetic nanoparticles has a wide range of applications because of the unique combination of the nanoscale magnetic core and the functional shell. Characterization and application of one important class of core-shell magnetic nanoparticles (MNPs), i.e., iron oxide core (Fe3O4/γ-Fe2O3) with a silica shell and outer of gold (Fe3O4-SiO2@Gold (FSG)) in Boron Neut...
متن کاملPhotocatalytic degradation of methylene blue from aqueous solution using Fe3O4@SiO2@CeO2 core-shell magnetic nanostructure as an effective catalyst
In the present study, the core-shell magnetic nanostructure of Fe3O4@SiO2@CeO2 was synthesized to investigate its use as an effective photocatalyst for methylene blue removal. The prepared samples were characterized by X-ray diffraction (XRD), transmission electron microscopy (TEM), and a vibrating sample magnetometer (VSM). The photocatalytic activity for the Fe3O4@SiO2@CeO2 core-shell magneti...
متن کاملSynthesis and study of structural and magnetic properties of superparamagnetic Fe3O4@SiO2 core/shell nanocomposite for biomedical applications
Objective(s): This paper describes coating of magnetite nanoparticles (MNPs) with amorphous silica shells. Materials and Methods: First, magnetite (Fe3O4) NPs were synthesized by co-precipitation method and then treated with stabilizer molecule of trisodium citrate to enhance their dispersibility. Afterwards, coating with silica was carried out via a sol-gel approach in which the electrostati...
متن کاملDesign, Optimization Process and Efficient Analysis for Preparation of Copolymer-Coated Superparamagnetic Nanoparticles
Magnetic nanoparticles (MNPs) are very important systems with potential use in drug delivery systems, ferrofluids, and effluent treatment. In many situations, such as in biomedical applications, it is necessary to cover inorganic magnetic particles with an organic material, such as polymers. A superparamagnetic nanocomposite Fe3O4/poly(maleic anhydride-co-acrylic acid) P(MAH-co-AA) with a core/...
متن کاملBis sulfamic acid functionalized magnetic nanoparticles as a retrievable nanocatalyst for the green synthesis of polyhydroquinolines and tetrahydrobenzopyrans
Synthesis of bis sulfamic acid-grafted on silica-coated nano-Fe3O4 particles (MNPs-TBSA) as a novel core/shell hybrid organic-inorganic magnetic nanostructures, and their performance as a retrievable heterogeneous acidic catalyst is disclosed. The catalytic performance of this novel material was studied for the green synthesis of pharmaceutically valuable polyhydroquinoline and tetrahydrobenzop...
متن کامل